
The GLOBE Program and Software Based
Telemetry Processing

Steve Duran, Chris Wilkinson, Michael Robbins,
Karen Michael, Greg Henegar

Data Processing Systems Branch, Code 514
Mission Operations and Data Systems Directorate

NASA, Goddard Space Flight Center
Greenbelt, Maryland 20771

Abstract:

A low cost approach to processing telemetry data is described. Telemetry
processing functions such as frame synchronization and Reed-Solomon error
control, traditionally performed in custom hardware circuits, were developed
in software and run on low cost desktop Unix workstations and portable laptop
computers. This technology was successfully applied in support of the Global
Learning and Observations to Benefit the Environment (GLOBE) program, and
has definite future application in the development of very low cost ground
data systems.

The GLOBE Program

The National Aeronautics and Space Administration (NASA) is participating in
the GLOBE program by providing satellite data relay service to certain schools.
The system provides a means for students to transmit their environmental
measurements to the National Oceanic and Atmospheric Administration (NOAA)
and receive processed data back. NASA provides telemetry formatting and
processing software such as frame synchronization and Reed-Solomon error
control, use of the Tracking Data and Relay Satellite System (TDRSS) Multiple
Access (MA) services, and Student Communication Unit (SCU) transmitters and
receivers. Figure 1 depicts the various elements of the GLOBE program and the
key data flows.

A typical data flow scenario starts with the student taking field
measurements(e.g. temperatures, wind speeds). These measurements are
formatted into a data file and transmitted at a pre-determined time using the
SCU transmitter. The transmission is relayed by the TDRSS satellite to the
ground terminal at White Sands, New Mexico where the data is fed into the
NASA Communications (NASCOM) network and transmitted back to the Goddard
Space Flight Center (GSFC) in Greenbelt, Maryland. At GSFC, the data is
received by the GLOBE Data Processing System, which performs software based
telemetry processing on the data stream, and reconstructs the original data
file transmitted by the student. The reconstructed file is then transmitted via
the Internet from GSFC to NOAA's Forecast Services Laboratory (FSL), where
data analysis and processing is performed. Results from the NOAA processing
are then transmitted back to the student at a later time, using the reverse path
of the original "return link". The student receives the results on the SCU
receiver.

RAL.GS.22.1

TDRS

GLOBE Forward
and Return Link
Data Paths

T
ra

ns
fe

r
F

ra
m

es

N
A

S
C

O
M

 B
LO

C
K

S

GSFC

DOMSAT

WSGT
STGT

NOAA
FSL
Boulder, CO

IPD
Bldg 23

NASCOM
Bldg 3/14

TDRSS
RTLS

TDRSS
FDLS

GLOBE
DATA
ProcessingInternet

SCU XMTR = Student Communications Unit Transmitter
SCU RCVR = Student Communications Unit Receiver
TDRSS FDLS = Tracking and Data Relay Satellite System Forward Link System
TDRSS RTLS = Tracking and Data Relay Satellite System Return Link System
NOAA FSL = Forecast Systems Laboratory
WSGT/STGT = White Sands Ground Terminal

SCU
XMTR

SCU
RCVR

 Figure 1: GLOBE Forward and Return Link Data Paths

Software Based Telemetry Processing

The Data Processing Systems Branch at NASA's Goddard Space Flight Center has
traditionally designed and operated ground based systems for processing the
return link telemetry from earth orbiting satellites. Many of these satellites
relay their data via NASA's Tracking and Data Relay Satellite System. The
"satellite" in this instance is the student's computer. Telemetry formatting and
telemetry processing was required for both sides of the forward and return
link paths.

Historically, the least expensive method for performing telemetry processing
has been custom digital logic circuits. The processes are bit manipulation
intensive. Previous trade studies comparing hardware to software showed the
cost of the computer to be the key factor. The evolution of commercial
computer technology has produced low cost and high performance computers.
This technology is a cost effective host for software based telemetry
processing.

Two common "building blocks" in NASA's ground data systems are the frame
synchronizer and the forward error correction functions. NASA adopted a set
of space data standards in the 1980's known as the Consultative Committee for
Space Data Standards (CCSDS) Blue Books. These specifications set standards for
both frame synchronization and forward error corrections. The Blue Books
specify frame synchronization patterns and frame lengths, and defines a

RAL.GS.22.2

Reed-Solomon code for reliable forward error correction. The following
sections describe these telemetry processing functions in more detail, as well
as how these functions were adapted to a cost effective software based
approach.

Telemetry frame synchronization and forward error correction functions
have been implemented in Application Specific Integrated Circuits (ASIC's)
and integrated into a tightly coupled real-time environment. This would
typically provide a high performance level (e.g.10 Megabits per second) at a
given fixed cost. Thus low and medium data rate applications had to absorb the
same cost as high rate applications. The evolution of commercial computer
technology has produced low cost, high performance off-the shelf computers,
suitable for use as host platforms for software based telemetry processors.

Software based telemetry processing allows the data system engineers to match
the performance requirements of a data system with a scalable telemetry
processing function hosted on an appropriate Commercial off-the shelf (COTS)
PC or Unix workstation. This results in cost savings for most applications,
which typically operate at low or medium data rates (below 2 Megabits per
second).

In order to lower development, replication, and maintenance costs, several
telemetry processing functions for the GLOBE data processing systems were
performed in software, rather than hardware. The functions are telemetry
formatting, Reed-Solomon encoding and decoding, frame sychronization,
convolutional encoding, and both frame and NASCOM block level cylic
redundancy check (CRC). Also, a simple packet procesor was developed to
process GLOBE data. Each of these software modules have been used as building
blocks in the telemetry processing systems for various missions. The most
noteworthy of these functions are the Reed-Solomon decoder and the frame
synchronizer which will be described in detail in the following two sections.

Software for the Frame Synchronization Process

The frame synchronization process involves a bit by bit search of the received
data to locate the synchronization pattern. The synchronized data is then
aligned to byte boundaries for subsequent processing. These first two steps
require extensive bit manipulation and pose a performance challenge to a
software approach.

The frame synchronization software was written to be flexible in order to
handle multi-missions, therefore the user must enter set up parameters in
order to customize the software to the application. The software allows the
user to enter such parameters as the frame synchronization pattern, the
length of the frame, and the error tolerance.

The frame synchronization process employs a set of strategies that ensure that
false acquisition of data is minimized. These strategies are embodied in a state
machine containing four states, or "modes of operation" which set the rules
for the synchronization process. The four Modes of operation for frame
synchronization are: Search, Check, Lock, and Flywheel. (See Figure 2)
Search Mode can be re-entered from any of the other 3 modes. Upon
Acquisition of Signal (AOS), Loss of Signal (LOS), or software reset the
algorithm defaults to Search Mode. AOS is typified by a period of noise followed
by a real signal.

RAL.GS.22.3

Since the frame synchronization pattern can occur anywhere in this
bitstream, it typically does not fall on a byte boundary. Search Mode is
conducted starting with the first byte of data received and shifting left using
bitwise operators in order to conduct a bit by bit search. After each shift the
value contained in the register is compared against a look up table, previously
generated, based on the chosen frame synchronization pattern. The use of a
look up table provides many benefits including speed, programmable error
thresholds, and inverted frame synchronization pattern detection.

Search Mode

If C
heck fram

e is invalid

If loss of Lock

If Check criteria is met

If failure to regain Lock

If
S

ea
rc

h
fr

am
e(

s)
 is

 fo
un

d

If regain of Lock
If loss of Lock and Flywheel Mode bypassed

If Check Mode is bypassed

Normal flow of valid data

Flow of invalid data

Check Mode

Flywheel Mode

Lock Mode

Figure 2: Frame Synchronizer State Diagram

Check, Lock, and Flywheel are not bit by bit search operations. These
operations look for the synchronization pattern at the expected end of the
previous frame window. The size of this window can be set by the user and can
range from +/- N bits. Occasionally the successive frame synchronization
patterns will not be found at the expected locations for various reasons. For
example, in some cases the bit errors exceed the error tolerance, and in other
cases bit slips may occur which cause the data to be skewed left or right by
more than the specified tolerance. In the latter case, if the frame
synchronization pattern is not in the expected window, the frame
synchronizer process enters Search Mode.

The primary mode of frame synchronization is called Lock Mode. In order to
get into Lock Mode the Search and Check criteria must be passed. Entering
Lock gives an indication that data is good and that the frame synchronizer
should remain in Lock Mode unless the error tolerance is exceeded. If the
error tolerance is exceeded the operation will "Drop Lock" indicating a Loss of
Signal (LOS) and enter Flywheel Mode.

Flywheel Mode allows a programmable number of invalid synchronization
patterns to be output on a premise that Lock can potentially be re-achieved at
any frame. It allows for a momentary dropout or a noise hit right on the
synchronization pattern. If Flywheel frames continue to exceed error
tolerance and Lock cannot be re-gained then the frame synchronizer enters
Search Mode. Many users prefer not to output data until Lock Mode is achieved
although with software, frames can be output during any mode.

RAL.GS.22.4

Once the frame synchronization pattern is matched the software passes the
location information to the byte alignment routine. The expected end of frame
is calculated according to the chosen frame length. The byte alignment
routine needs to know which bit of which byte contains the start and end of
the frame. Once this information is calculated, the frame is byte aligned
starting with the first byte of the frame synchronization pattern (See Figure
3). The shifting is performed bitwise across the entire frame 32 or 64 bits at a
time, depending on the computer's maximum register length. The frame
synchronization routine runs at up to 50 Mbps on an SGI Challenge L with a
150 MHz Processor, and up to 30 Mbps on a 70 MHz SUN SPARC 5.

Frame Synchronization Pattern Slipped Left by 3 bits
HEX D 6 7 F E 0 E
BIN X000 1101 0110 0111 1111 1110 0000 1110 1XXX

Frame Synchronization Pattern Slipped Right by 2 bits
HEX 6 B 3 F F 0 7
BIN XX00 0110 1011 0011 1111 1111 0000 0111 01XX

Byte Aligned Frame Synchronization Pattern
HEX 1 A C F F C 1 D
BIN 0001 1010 1100 1111 1111 1100 0001 1101

Figure 3: Byte Alignment Examples

Software for the Reed-Solomon Decoding Process

An error detection and correction method is necessary since both the return
and forward link data transmissions are subject to noise interference which
introduces errors into the data stream. In most cases,
acknowledgment/retransmit protocols are not always feasible due to long
round trip delays. The CCSDS recommendation for Advanced Orbiting Systems
(AOS) Grade-2 service provides error control using Reed-Solomon (RS)
encoding and decoding. Current systems utilize a hardware Reed-Solomon
card. The software decoding algorithm posed a design and performance
challenge, due to the need for an efficient implementation of the intense
calculations that are required for decoding in order to achieve usable
performance.

RS coding theory is an elegant mathematical theory based on concepts from
linear algebra, information theory, and finite field mathematics. The RS
decoding algorithm is a five step process with a sixth step for interleaved data.
Each box in Fig. 4 is one of the steps of the decoding process and corresponds to
a software function. In order to realize an efficient software implementation,
knowledge of the target computer architecture, explicit register use, lookup
tables, and careful implementation of the decoding equations and algorithms
were all used to provide an efficient software solution. The decoder is fully
CCSDS compliant, capable of processing shortened RS codes and interleaved
data.

Several performance evaluations were conducted on versions of the RS
decoder software that had been ported to various operating system
environments. The DOS executable achieved a data rate of approx. 95 kbps on a
33 MHz 486SX laptop, the UNIX executable on a 70 MHz SUN SPARC 5 had a
maximum data rate of 1.1 Mbps, and an HP executable had a maximum data rate
of 2 Mbps on an HP9000. These data rates are adequate for many missions.

RAL.GS.22.5

Syndrome
Generator

Simultaneous
Equation Solver

Polynomial
Root
Extracter

Determines i f
there are errors

Determines Error
Location
Polynomial

Determines Error
Locations

Error
Magnitude
Calculator

Determine the
Error Magnitudes

Error
Corrector

Reed-Solomon
Code Block

Corrected
Data Outsyndrome

error location
polynomial error locations

error magnitudes

Deinterleaver

Reed-Solomon
Encoded Data
Frame

 Figure 4: RS Decoding Algorithm Block Diagram

The software version of the RS decoder has several advantages over its
hardware, ASIC-based counterpart. First is flexibility. With a new Galois Field
symbol lookup table and new RS code parameters, the decoder could be
modified to decode almost any RS code. In order to make the same
modifications to a hardware decoder would mean to almost redesign the ASIC
hosting the algorithm, and would be costly. Next is reliability. Software
components, once proven, do not wear out or fail. The hardware platforms
hosting the RS software historically have higher reliability, as well as
commercial maintenance support. One area in which the software version
will fall short of a hardware implementation is in high-speed performance
(>10 Mbps). However, the price/performance ratios of commercial workstation
should continue to improve at 30% per year. Thus the price/performance
level of a software implementation will continue to improve, without the need
for redesign. In the mean time, adequate performance is readily achievable
for those medium and low data rate applications which comprise the bulk of
upcoming spacecraft missions. Also, replication of the software decoder costs
nothing, whereas replication of a hardware decoder is rather costly.

For the GLOBE project, since the forward link data was RS encoded, an RS
decoder was required for the student lap top PC which operates and records the
data from the portable TDRSS receiver. Rather than developing an RS decoder
on a PC card, which would have been time consuming and costly, the software
RS decoder that had been developed for a UNIX based machine was easily
ported to the DOS/Windows PC environment.

Operations

GLOBE daily operations require very little man power. The system was
designed to operate with very little operator interaction. The student
transmissions are scheduled during 10 to 20 minute periods throughout the
day. The operator actions take place following the school day after all the data
has arrived. There are really only two routine tasks for an operator. The first
one is that once data has been received and processed, an operator has to
manually transfer the files over the internet to NOAA FSL. The second
operator task is required when data needs to be sent on the forward link, an
operator has to manually perform this operation. But with minimal effort, it

RAL.GS.22.6

would be possible to automate both of these task, and in the near future, they
may be automated.
Figure 5 below depicts the data flows between three locations for a particular
GLOBE system test and demonstration. Data path 1 was the forward link data
path from the Goddard Space Flight Center (GSFC) to the White Sands Ground
Terminal (WSGT). From WSGT, forward link data was transmitted through
paths 1A and 1B, via TDRSS to a receiver in Reston, Virginia and a receiver on
the roof of the NASA headquarters building in Washington D.C. Paths 2 and 3
formed the return link data paths. Part of the test/demonstration included an
engineer at the NASA headquarters site taking a picture with a digital camera,
then transmitting the picture on the return link to GSFC. Once the image was
received and viewed at GSFC, the image was then transmitted back on the
forward link. Engineers at both receiver sites were then able to receive the
image and view it. It should be noted that the real time telemetry processing,
both at GSFC and at the remote sites, was performed in software.

NASCOM/
TDRSSGSFC,

Greenbelt, MD

STEL
Reston, VA

Roof HQ, DC

1

1A

1B

2

2

3

3

 Figure 5: GLOBE System Demonstration

Conclusions

Software telemetry processing was successfully applied to the ground system
for the GLOBE program. System costs were reduced in many areas due largely
in part to a shortened design and implementation phase, commercial hardware
to run software, and a fairly autonomous system requiring few man hours
during operations. Also, maintenance costs were reduced, since in an "all
software" solution, only standard vendor maintenance is required for the
commercial hardware. No custom card maintenance is necessary. Thus, it
makes sense to choose a software implementation of telemetry processing
functions whenever performance requirements allow. The actual
performance threshold will increase each year due to the advances in
commercial CPU technology, and not due to the constant and costly hardware
redesign that usually takes place inorder to increase performance. Clearly,
this new approach possesses many possibilities in future low cost ground
system applications.

RAL.GS.22.7

RAL.GS.22.8

